If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2=-25x+91
We move all terms to the left:
6x^2-(-25x+91)=0
We get rid of parentheses
6x^2+25x-91=0
a = 6; b = 25; c = -91;
Δ = b2-4ac
Δ = 252-4·6·(-91)
Δ = 2809
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2809}=53$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(25)-53}{2*6}=\frac{-78}{12} =-6+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(25)+53}{2*6}=\frac{28}{12} =2+1/3 $
| -550.4+b+39.68=-71.03 | | 0=5x^2+33x-14 | | 9/36=x/24 | | 3/6/1/x=2 | | 0.8^x=0.01 | | 13y=32+5y | | 1=2u−1 | | 9=1-4x21 | | -3x=5x=8 | | 10=2u+4 | | n-27=4n | | 6y+9=y | | 6y(=y | | -(3z+4)=6z-#(3z+2) | | (x-1)(√x-1)=3 | | 0=8x^2+8x+15 | | 4^x+1=8 | | (3x+1)=(4x-21) | | (5x-1)=(2x+26) | | 14(8x+4)=2x–4 | | X^2y=100 | | (5x−1)=(2x+26) | | (8+10)r=(3+25)r | | 5q^2-14q=15 | | (5x+19)+(3x+15)=90 | | 5q^2-14q+15=0 | | 2÷5-1÷2=x÷5 | | 5x+19)+(3x+15)=90 | | (6x+26)=(8x+30) | | 6x2+11x+3=0 | | -6-(-8)=a | | 5/3t=7/9 |